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Abstract. A model developed by Glass and Rice for Brownian particles in liquids isemployed
for the computations of the velocity autacorrelation function and mean square displacement
in liquid K 5Csy 5 alloy introducing the concept of the motion of ‘effective atoms’. Further,
collective excitations in this Equid metal alloy have been studied by computing the longi-
tudinal and transverse phonon eigenfrequencies employing three different approaches. The
computed results show good qualitative and quantitative agreement with each other. The
effective interatomic pair potential used for the study of dynamics (single particle as well as
collective mations) of Kq4Cs,s alloy is abtained using the empty<core pseudopotential
given by Ashcroft. Also, some thermodynamical properties have been calculated using the
longitudinal and transverse phonon velocities and are in good agreement with the available
results,

1. Intreduction

The problem of the study of liquid metals and their alloys has immense importance
because of increasingly manifold interests of not only physicists but also chemists and
engineers. During the past few decades, metallic liquids have been extensively studied
[1] using the pseudopotential theories. Efforts {2, 3] have also been made to study
the dynamics of liquid metals through the calculation of the zero-frequency transport
coefficient, which characterizes the mass, momentum and energy flow in liquids under
different conditions of velocity, density and temperature gradients in these liquids.
On the other hand, neutron inelastic scattering measurements have provided some
information concerning the dynamic structure of liquids [4]. These investigations of the
dynamical structure factor S{gq, @) give us some idea of the collective excitations also.
However, in practice, knowledge of S(g, w) is restricted by experimental limitations to
a finite range of the values of momentum transfer Aq and the energy transfer Zw. This
paper is divided into six different sections. Section 2 deals with the interatomic forces
and effective interatomic potential in K; sCs; 5 alloy. The motion of effective atoms and
its application to the computation of dynamical correlations in liquid metal alloy are
discussed in section 3. The method of computation of longitudinal and transverse phonon
eigenfrequencies is presented in section 4. Section 3 describes the calculation of some
thermodynamical properties. Finally, the conclusions drawn from the study in the case
of K;5Csy 5 alloy at 373 K are presented in section 6.
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2. Pair potentials

The effective pair potentials between screencd ions provide the basis for the calculations
of the structural and thermodynamical properties of simple liquid metals. These pair
potentials are commonly evaluated by treating the electron—ion coupling through the
use of the pseudopotential concept and of linear screening theory. The usua] form for
the effective ion~ion interaction potential V(r) in a pure liquid metal is given by {5]

vy = ZL

= [ Fayexvi—ig -y g )
(2 )
The first term on the right-hand side represents the direct electrostatic repulsive inter-
action between two ions with valence Z and the second term comes from the indirect
interactions associated with electron screening.

The density-dependent effective interatomic potential in the case of an alloy of type
AyB, -y can be written as [6]

Verlr) = CAVaal(r) + ChVeg(r) + 2CACaVa5(r) )

with concentrations C, of A type and Cg of B type.

Alternatively, the effective inferatomic pair potential, which has been computed
treating the binary alloy as a one-component system consisting of effective atoms, is
given by

(Zeffe Z(Zcffe J' dg sin(gr)
r

Veulr) = cos(green) (/- 0. (3)

The effective empty-core radius r; ¢ used in (3) is related to the Wigner—Seitz radius of
the effective atom (alloy atoms) and is given by [7]

Foem = 0. 51730y Z
where

$rdiey = Xdard + (1 — X)inrd
and

Zo=CaZa+ CaZs.

Here r,, rg and r,y,, are the Wigner—Seitz radii of A, B and alloy, respectively. Another
parameter, kg, used in the calculation of effective potential through (3) is given by

kF(eff) =(3x Zzeffpeff) 173
where p4(=Caps + Cppp) is the effective number density of the alloy.

2.1. Results

An especially simple and useful form of a model potential is the empty-core model
psendopotential proposed by Ashcroft [8] which is employed in the present compu-
tations. The effective interatomic pair potentials for the liquid binary K, sCs; s alloy have
been calculated in two different ways. One is by using (2) and the other is by treating
the binary alloy as a one-component system consisting of effective atoms with the help
of (3). These effective interatomic pair potentials for liquid Kq 5Csy 5 alloy together with
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Figure 1. Pair potentials for liquid K, ;Cs, 5 ailoy: Vs — —, V(oo ——
V(oo - » Vee(#) computed using (2); - - =, Viu(r) computed using (3).

the pair potentials of Vi k(r}, Veecs(r) and Vi c(r) are shown in figure 1. A close
examination of the two interatomic potentials reveals that the potentials are almost
similar as far as the repulsive nature is concerned. It can be observed from figure 1 that
the effective potential obtained using the concept of ‘effective atoms’ shows slightly
smaller well depths than the potential obtained using (2) does. Moreover, both these
effective potentials show long-range oscillations converging towards a finite value
instead of zero for r— . This may be because the repulsive part of the Coulomb
potential dominates over the oscillations due to the ion—¢lectron-ion interactions. The
potential used for all further computations in the present paper is that obtained by (3)
treating the binary alloy as a one-component system and consisting of ‘effective atoms’.

2.2, Elastic constants

Intheisotropicsolids, threeindependent elastic constants exist. Because of the existence
of central forces the Cauchy relationship has been assumed in these solids. The three
independent elastic constants are then given by [9]



7488 K C Jain et al

Cy = PetkaT(3 + 21, /5 + 1, /5)
Cip = PegkpT(1 — 211 /15 + 1, /15) #
C44 = pcfkaT(l + 41[/15 + 12/15)

with p,y the effective number density of the alloy. The integrals /, and I, are defined as
(10}

i = ;:}J g(nrVig(r)dr

_ Pt [T 2em
= | sV o

where g(r) is the pair correlation function, and V/«{(r) and V;(r) are the first and second
derivatives of the effective interatomic pair potential V() as calculated using (3).

The above-obtained effective pair potential is then further used to obtain the elastic
constants. The values of these three independent elastic constants in KqsCsq 5 alloy
at 373K are C,;=3.52x10"dyncm™%, C;,=1.218 X 10"dyncm™ and Cy=
1.15 % 10" dyn cm™2,

3. Single-particle motion

The most elegant method of determining the structure is to start from the description of
singie-particle motion. A whole class of theories of transport in dense fluids has been
formulated on the basis of Brownian motion of particles. The simplest theory of Brown-
ian motion describing single-particle motion is based on the phenomenological Langevin
equation. A liquid is assumed to have a quasi-crystalline structure for the time smaller
than the relaxation time (1072 s) even at melting temperature and is characterized by a
characteristic frequency @y. In analogy with the theory of solids, a simple model which
may be considered for liquids is that of a Brownian particle diffusing in a harmonic well
of frequency w,.

Following Glass and Rice [11] the simplified equation of motion in terms of the
normalized velocity autocorrelation function (r) is written as

d2y/de + By(dyw/di) + wiyp = 0. (5a)

Using the boundary conditions (discussed elsewhere [11]) the velocity autocorrelation
function can be written as

¥(1) = [exp(—Bot/2)][cos(§1) + (Bo/25) sin(§n)]. (5b)

The diffusive motion of the atoms, always present in the liquids, is described in terms
of the linear growth of the mean square distance travelled by the vibrating atoms over a
time t. Hence the mean square displacement {r’(?)) is given by [11]

200 = (RO - ROP) = 60 [ de (= 1)y ©
0

Here (0% = 3kgT/M is the average thermal velocity.
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Figure 2. Present computed result for velocity autacorrelation function 1) in K, sCs, s alloy.

The above method, which was used earlier for the study of dynamical correlations
in liquid metals [12-14], has been extended to the computation of the velocity auto-
correlation function and mean square displacement in liquid K¢ 5Cs; 5 binary alloy in the
light of the concept of the motion of effective atoms analogous to single-particle motion
in liquid metals. The results of these computations have been discussed in section 3.1.

3.1. Results

The velocity autocorrelation function (¢} computed using (56) for K, 5Csy 5 alloy at
373 K is shown in figure 2. It can be observed from figure 2 that the negative region
indicates the backscattering of the effective atoms from the shell of their nearest neigh-
bours arising from the short-range, strongly repulsive core collisions. The positive
behaviour of 1(¢) after the negative region indicates the redevelopment of the memory
of the system.

The results of the mean square displacement (r()} for K; 5Csy s alloy are shown in
figure 3. For small times the values of the mean square displacement provide evidence
of the fact that there is a vibratory component present in the atomic motions whereas
for larger times the atoms diffuse freely like gases and the curve (for times greater than
8 x 1073 s) becomes a straight line having a slope D (diffusion coefficient) which can be
written as {r*(¢)) = 6Dt + C. The diffusion coefficient D for liquid K;sCsy s alloy as
calculated from the linear part of mean square displacement curve is 3.20 X 1073 cm?s™!
and shows good agreement with the effective value [15] of the diffusion coefficient,
3.14 X 10~ em?s™L.
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Figure 3, Present computed result for mean square displacement {r%(1)) in Ky sCsq s 2lloy.

4. Collective atomic motions

4.1. Theory of phonons in amorphous solids

Following Takeno and Goda[16] the secular equation for the phonon dispersion is given
by

detjw?8(ap) — Ds(g) =0 Q!

where D,4(g)} is the dynamical matrix. Equation (7) is used in the lattice dynamics of the
crystal lattice if the effective force constant is replaced by the bare force constant g. The
effective force constants are derived from a spherically symmetric two-body potential;
then the dynamical matrices giving eigenfrequencies are written in terms of effective
pair potential and effective pair correlation function:

Dula) = 0@ = T2 [ arg) [ vist) (1 - E2)
1]

. , sin(gr) 2cos(gr) . 2sin{gr)
# 1PV - Vi) (3 - -2 L 2N s
D.u(a) = Dy (@) = 0}(a) = 5% [ ar ) [ vy x (1 - L)
o)
, , . cos(gr) _sin(gr)
+ [F2Ve(r) — rVig(n] % (5 + @ ‘(_qr)T“)} (8b)

where p.; and M are the effective number density and effective mass of the alloy,
respectively.
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4.2. The model approach of Hubbard and Beeby

According to Hubbard and Beeby [17] who argued that the product of the static pair
correlation function g(r) and the second derivative V"(r) of the potential peaks near the
hard-sphere diameter, the expressions for ex(q) and &,{g) can be written as

03(@) = o}l - (B sin(g0)l/go - [6cos(aoll/(go)* + [6sin(g)/ (@] ©Oa)
0g) = wkl1 + [3005(40))/(go)" - [3sin(q0))/(go)’ 95)
where "
or = (22 " dr gy viatr) 90
0

is the.maximum frequency and ois the effective hard-core diameter of the effective atom
in AyB,_yalloy.

4.3. Results

The eigenfrequencies of the longitudinal and transverse phonon modes, in K;5Csy s
alloy, have been computed using (84) and (8b) and are shown in figure 4. The dispersion
curves show a linear variation in the low-wavevector transfer region and depict the
characteristics of elastic waves. The first minimuom in the w—g curve for the longitudinal
mode falls at the same value of ¢ (1.6 A~!) as the peak in the static structure factor S(g)
of Ky sCsg 5 alloy [18]. It has been revealed through computer simulations and analytic
calculations that thisminimum arises from a process analogous tothe Umklappscattering
in the crystalline solids. It is also evident from figure 4 that longitudinal phonon modes
have more prominent oscillations than transverse phonon modes.

The longitudinal and transverse phonon eigenfrequencies obtained by the model
approach of Hubbard and Beeby [17] have also been shown in figure 4. The phonon
eigenfrequencies have been computed treating the system of KgsCsg s alloy as a one-
component system. The effective hard-sphere diameter for K ;Cs; 5 ailoy is obtained
using [19]

T="nat+ns

where 7, = (r/6)p,07 andi = A, B. Here ¢; and p; are the hard-sphere diameters and
the number densities of the A and B components, respectively, in the liquid metal alloy.
It is also observed from figure 4 that the longitudinal and transverse phonon modes as
calculated by the approach of Hubbard and Beecby reproduce all the characteristic
features of the dispersion curves.

4.4. The model calculation of Bhatia and Singh

An independent model approach given by Bhatia and Singh [20] has also been used for
the computation of longitudinal and transverse phonon frequencies in the case of liquid
metal KqsCsy 5 alloy. The model assumes that the ions in a simple metal with cubic
symmetry interact with a central pairwise potential which is effective between nearest
neighbours only. It also assumes that the force on an ion due to volume-dependent
energies in the metal (kinetic and exchange energies of the conduction electrons, the
ground-state energies of the electrons, etc) could be calculated using the Thomas—
Fermi method. Under these assumptions, Bhatia and Singh [20] write the equations
determining the w—g relations in the case of liquids as
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Figure 4. The lengitudinal (L) and transverse (T) phonon frequency results for liquid
Ko sCsy s alloy: ——, computed using the approach of Takeno and Goda[16]; - - —,computed
sing the approach of Hubbard and Beeby [17]; - , computed using the approach of
Bhatia and Singh [20].

poi(g) = 2NJ[11(x) — Jo(x)/5)/a} + Kokirq?[Glgr)}*/lg + kirg(a)] (102)
pwi(g) = (Nb/a?)[3/o(x)/5 — J2(x)] (10b)
with

Jo(x) = 1 — [sin(x)]/x

Ja(x) = 4 — sin(x) [(1/x) — (2/x)] ~ {2 cos(x)]/x?
and

X = ga.

Here N, is the number of nearest neighbours in the system, p is the density and a the
nearest-neighbour distance. § and ¢ can be obtained for a body-centred cubic lattice
from the relations [20]

Ci, =8B/3 + 88/9 + K. Cp = —88/3 + 85/9 + K,
Cu = 88/3 + 85/5.

4.5. Results

The mode} approach developed by Bhatia and Singh [20] as discussed in section 4.4 has
also been used to estimate the eigenfrequencies of the longitudinal and transverse
phonon modes in liguid Kq 5Csg 5 alloy. The parameters § and 8 used in these calculations
have been obtained through the use of elastic constants (equation (4)) for the liquid
metal K ;Csg s alloy. These phonon dispersion curves are also shown in figure 4. A close
examination of the longitudinal and transverse branches, as calculated by the model
developed by Bhatia and Singh for the phonon dispersion, shows ali the main charac-
teristic features of the dispersion curves.
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Because of the non-availability of any experimental results on phonon dispersion for
Ky 5Csp s atloy, it has not been possible to compare the computed results with experiment.
Nevertheless, the results obtained using three different theoretical approaches are in
close agreement qualitatively as well as quantitatively.

5. Thermodynamical properties

From the long-wavelength limit of the dispersion curves, the longitudinal and transverse
velocities of sound are estimated. The calculated values of the longitudinal sound
velocity are V= 1.70 X 10°ecm s, 1.55 X 10°cm s™! and 1.42 X 10%cm s™! from the
dispersion curves obtained using the three different approaches, i.e. the methods of
Takeno and Goda, of Hubbard and Beeby, and of Bhatia and Singh, respectively.
These values are then compared with the value of 1.58 x 10° cm s™! obtained from the
theoretical calculation [21] of the velocity of sound. Similarly from the linear part of the
transverse phonon dispersion curves the values of the transverse phonon velocity V,
are also estimated. These are V,=1.0Xx10°cms™!, 0.85x 10°cms™! and
0.76 x 10° cm s™!, respectively.

For an isotropic solid the isothermal bulk modulus By is given by [22] Br=
p(V} — 4 x V}/3) where pis the density of the solid. For Kg 5Cs, s alloy using the above-
obtained values of V| and V|, the values of the isothermal bulk modulus are
2.22 x 10" dyn cm™?, 2.06 X 10"°dyn cm™? and 1.78 x 10"° dyn cm™2. These values of
Brare then compared with the value 0f2.03 x 10'° dyn cm ™2 obtained from the averaged
value over the pure liquid metals, The results on Brare further compared with the value
of 2.05 x 10" dyn cm ~? obtained by Gopalarao and Gupta [23] and with the value of
1.98 x 10" dyn cm™? calculated using the elastic constant [24]. Further, these results
have also been compared with the value 0f 2.03 % 10'% dyn cm™~2obtained from the long-
wavelength limit of the structure factor, i.e. $(0) = 0.02534.

Further, following Hafner [22] and using these values of the longitudinal and trans-
verse sound velocities, the Debye temperature ©p has been calculated for Ky 5Csy 5
alloy. The calculated vaiues of the Debye temperature for liquid K, sCsqs alloy are
Op = 71.04 K, 60.77 K and 54.43 K, respectively. Using the Grimvall [25] formula the
calculated average value of the Debye temperature in liquid Ky 5Csq 5 alloy is 51.25 K.

6. Conclusions

We have presented detailed theoretical calculations of Kq:;Csy s alloy at 373 K. The
present study on the atomic structure and vibrational dynamicstogether with the thermo-
dynamical properties reveals the following features.

(i) The study indicates that, in liquid alloys, long-range oscillations are also present
in the ion—ion potential similar to the case of liquids and liquid metals.

{(ii) The model proposed by Glass and Rice, assuming that liquids have a quasi-
crystalline structure, yields a suitable description of the motion of effective atoms in
liquid K, sCsg 5 alloy analogous to single-particle motion in liquid metals.

(tii) A perusal of section 4 shows that the thus-obtained dispersicn relations from
the three different theoretical approaches {16, 17, 20] reproduce all the broad features
of the dispersions in liquid Ky 5Csg s alloy.
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