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Abstract. A modeldeveloped by GlassandRice for Brownian particles in liquidsisemployed 
for the computations of the velocity autocorrelation function and meansquare displacement 
in liquid K, 5C&s alloy introducing the concept of the motion of 'effective atoms'. Further, 
collective excitations in this liquid metal alloy have been studied by computing the longi- 
tudinal and transverse phonon eigenfrequenciesemploying three different approaches. The 
computed results show good qualitative and quantitative agreement with each other. The 
effective interatomic pair potential used for the study of dynamics (single particle as well as 
collective motions) of &&5 alloy is obtained using the empty-core pseudopotential 
given by Ashcroft. Also, some thermodynamical properties have been calculated using the 
longitudinal and transverse phonon velocities and are in good agreement with the available 
results. 

1. Introduction 

The problem of the study of liquid metals and their alloys has immense importance 
because of increasingly manifold interests of not only physicists but also chemists and 
engineers. During the past few decades, metallic liquids have been extensively studied 
[l] using the pseudopotential theories. Efforts 12, 31 have also been made to study 
the dynamics of liquid metals through the calculation of the zero-frequency transport 
coefficient, which characterizes the mass, momentum and energy flow in liquids under 
different conditions of velocity, density and temperature gradients in these liquids. 
On the other hand, neutron inelastic scattering measurements have provided some 
information concerning the dynamic structure of liquids [4]. These investigations of the 
dynamical structure factor S(q, U) give us some idea of the collective excitations also. 
However, in practice, knowledge of S(q, o) is restricted by experimental limitations to 
a finite range of the values of momentum transfer Bq and the energy transfer rim. This 
paper is divided into six different sections. Section 2 deals with the interatomic forces 
and effective interatomic potential in K&%.s alloy. The motion of effective atoms and 
its application to the computation of dynamical correlations in liquid metal alloy are 
discussed in section 3. The method of computationof longitudinal and transverse phonon 
eigenfrequencies is presented in section 4. Section 5 describes the calculation of some 
thermodynamical properties. Finally, the conclusions drawn from the study in the case 
of Ko.sCso.s alloy at 373 K are presented in section 6. 
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2. Pair potentials 

The effective pair potentials betweenscreened ionsprovide the basis for the calculations 
of the structural and thermodynamical properties of simple liquid metals. These pair 
potentials are commonIy evaluated by treating the electron-ion coupling through the 
use of the pseudopotential concept and of linear screening theory. The usual form for 
the effective ion-ion interaction potential V(r) in a pure liquid metal is given by [5 ]  
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The first term on the right-hand side represents the direct electrostatic repulsive inter- 
action between two ions with valence Z and the second term comes from the indirect 
interactions associated with electron screening. 

The density-dependent effective interatomic potential in the case of an alloy of type 
AxB,-x can be written as [6] 

v.&) = GVAA(r )  + G V B B ( ~ )  + ~ C A C B V A B ( ~ )  (2 )  
with concentrations CA of A type and CB of B type. 

Alternatively, the effective interatomic pair potential, which has been computed 
treating the binary alloy as a one-component system consisting of effective atoms, is 
given by 

The effective empty-core radius r,,,fq used in ( 3 )  is related to the Wigner-Seitz radius of 
the effective atom (alloy atoms) and isgiven by [7] 

= 0.51ra,10yz;dfl 
where 

4n&,y = X%nri + (1 - xl$nr& 

z,, = CAZ, + CBZ,. 
and 

Here r,, rB and raaOu are the Wigner-Seitz radii of A, B and alloy, respectively. Another 
parameter, kF, used in the calculation of effective potential through (3) is given by 

kqrrr) = (3X’Z,ffP,1d’~’ 

where p,ff(=C@A + CBpB) is the effective number density of the alloy. 

2.1. Results 
An especially simple and useful form of a model potential is the empty-core model 
pseudopotential proposed by Ashcroft [SI which is employed in the present compu- 
tations. The effectiveinteratomic pair potentialsfor the liquid binary Ko.sCso.s alloy have 
been calculated in two different ways. One is by using (2) and the other is by treating 
the binary alloy as a one-component system consisting of effective atoms with the help 
of (3). These effective interatomic pair potentials for liquid Ko.5Cso.s alloy together with 
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Figure 1. Pair potentials for liquid K&st, alloy: -, V(r)K-K; -. , .-, V(r )cd , ;  -1-, 

V(r)&& Vc,,(r) computedusing(2);---. V,,Xr) computedusing (3). 

the pair potentials of VK-K(r), Vcra(r) and VK.cs(r) are shown in figure 1. A close 
examination of the two interatomic potentials reveals that the potentials are almost 
similar as far as the repulsive nature is concerned. It can be observed from figure 1 that 
the effective potential obtained using the concept of ‘effective atoms’ shows slightly 
smaller well depths than the potential obtained using (2) does. Moreover, both these 
effective potentials show long-range oscillations converging towards a finite value 
instead of zero for r+ m. This may be because the repulsive part of the Coulomb 
potential dominates over the oscillations due to the ion-electron-ion interactions. The 
potential used for all further computations in the present paper is that obtained by (3) 
treating the binary alloy as a one-component system and consisting of ‘effective atoms’. 

2.2. Elastic constants 
In theisotropicsolids, threeindependent elasticconstantsexist. Because of theexistence 
of central forces the Cauchy relationship has been assumed in these solids. The three 
independent elastic constants are then given by [9] 
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with pcfr the effective number density of the alloy. The integrals I ,  and f Z  are defined as 
P O I  

whereg(r) is the paircorrelationfunction,and Viff(r) and VErf(r) are the first andsecond 
derivatives of the effective interatomic pair potential VCa(r) as calculated using (3). 

The above-obtained effective pair potential is then further used to obtain the elastic 
constants. The values of these three independent elastic constants in K&so,, alloy 
at 373 K are Cll = 3.52 X 10'"dyn cm-', C,, = 1.218 X 10'"dyn cm-' and C,, = 
1.15 X loTo dyn cm-'. 

3. Single-particle motion 

The most elegant method of determining the structure is to start from the description of 
single-particle motion. A whole class of theories of transport in dense fluids has been 
formulated on the basis of Brownian motion of particles. The simplest theory of Brown- 
ian motion describingsingle-particle motion is based on the phenomenological Langevin 
equation. A liquid is assumed to have a quasi-crystalline structure for the time smaller 
than the relaxation time s) even at melting temperature and is characterized by a 
characteristic frequency wo. In analogy with the theory of solids, a simple model which 
may be considered for liquids is that of a Brownian particle diffusing in a harmonic well 
of frequency wo. 

Following Glass and Rice Ill] the simplified equation of motion in terms of the 
normalized velocity autocorrelation function q(r) is written as 

dZq/df2 + &(dtp/dt) + w?,q = 0. (5a) 

Using the boundary conditions (discussed elsewhere 1111) the velocity autocorrelation 
function can be written as 

W) = [exp(-Po@)I [cos(B) + (PO/% sin(b)l. (5b) 

The diffusive motion of the atoms, always present in the liquids, is described in terms 
of the linear growth of the mean square distance travelled by the vibrating atoms over a 
timet. Hence the mean square displacement (rz(t)) is given by [ll] 

(r'(r)) = ( [R( t )  - R(O)lz) = 6(u2)  io'' df' ( t  - f')q(t'). (6) 

Here (u2)  = 3kBT/M is the average thermal velocity. 
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Figure2. Present computed result forvelocityautocorrelation function $(I) in K&s0 alloy. 

The above method, which was used earlier for the study of dynamical correlations 
in liquid metals [12-141, has been extended to the computation of the velocity auto- 
correlation function and mean square displacement in liquid Ko.jCso,s binary alloy in the 
light of the concept of the motion of effective atoms analogous to single-particle motion 
in liquid metals. The results of these computations have been discussed in section 3.1. 

3.1. Results 

The velocity autowrrelation function @,(I) computed using (5b) for &.jCso,j alloy at 
373 K is shown in figure 2. It can be observed from figure 2 that the negative region 
indicates the backscattering of the effective atoms from the shell of their nearest neigh- 
bours arising from the short-range, strongly repulsive core collisions. The positive 
behaviour of ?$(I) after the negative region indicates the redevelopment of the memory 
of the system. 

The results of the mean square displacement ( rz ( t ) )  for &,jCso.s alloy are shown in 
figure 3. For small times the values of the mean square displacement provide evidence 
of the fact that there is a vibratory component present in the atomic motions whereas 
for larger times the atoms diffuse freely like gases and the curve (for times greater than 
8 x s) becomes a straight line having a slope D (diffusion coefficient) which can be 
written as (rz(t)) = 6Dt + C. The diffusion coefficient D for liquid Ko.sCso.s alloy as 
calculated from the linear part of mean square displacement curve is3.20 x 10-5 cmz s-l 
and shows good agreement with the effective value [15] of the diffusion coefficient, 
3.14 x 10+ cmz s-’. 
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Figure 3. Present computed result for mean square displacement (r'(1)) in &.& alloy. 

4. Collective atomic motions 

4. I .  Theory of phonons in amorphous solids 
Following Takeno and Goda [16] the secular equation for the phonon dispersion is given 
by 

detlw26(olp) - D&)( = 0 (7) 

where DeP(q) is the dynamical matrix. Equation (7) isused in the lattice dynamics of the 
crystal lattice if the effective force constant is replaced by the bare force constant q .  The 
effective force constants are derived from a spherically symmetric two-body potential; 
then the dynamical matrices giving eigenfrequencies are written in terms of effective 
pair potential and effective pair correlation function: 

where perf and M are the effective number density and effective mass of the alloy, 
respectively. 
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4.2. The model approach of Hubbard and Beeby 

According to Hubbard and Beeby [17] who argued that the product of the static pair 
correlation function g(r) and the second derivative V"(r) of the potential peaks near the 
hard-sphere diameter, the expressions for q ( q )  and w,(q) can be written as 

7491 

= w${1 - [3 sin(q~)l/qo - [6 c o ~ ( q d I / ( q o ) ~  + [6 sin(sdI/(qo)'l ( 9 4  

(96) 4 ( q )  = w 3 1  + [3 cos(qo)l / (q~)~ - [3 ~in(qu)I/(qo)~} 
where 

i s  the.maximum frequency and ois the effective hard-core diameter of the effective atom 
inAxB,-xalloy. 

4.3. Results 
The eigenfrequencies of the longitudinal and transverse phonon modes, in K & S ~ . ~  
alloy, have been computed using (Sa) and (86)  and are shown in figure 4. The dispersion 
curves show a linear variation in the low-wavevector transfer region and depict the 
characteristics of elastic waves. The first minimum in the 0-q curve for the longitudinal 
mode falls at the same value of q (1.6 A-') as the peak in the static structure factor S(q) 
of K,&S~.~ alloy [lS]. It has been revealed through computer simulations and analytic 
calculations that thisminimum arisesfrom aprocess analogous to the Umklappscattering 
in the crystalline solids. It is also evident from figure 4 that longitudinal phonon modes 
have more prominent oscillations than transverse phonon modes. 

The longitudinal and transverse phonon eigenfrequencies obtained by the model 
approach of Hubbard and Beeby [17] have also been shown in figure 4. The phonon 
eigenfrequencies have been computed treating the system of K , & S ~ . ~  alloy as a one- 
component system. The effective hard-sphere diameter for Ki,5Cs+5 alloy is obtained 
using [19] 

where vi = (n/6)pio7 and i = A, B. Here U, and pi are the hard-sphere diameters and 
the number densities of the A and B components, respectively, in the liquid metal alloy. 
It is also observed from figure 4 that the longitudinal and transverse phonon modes as 
calculated by the approach of Hubbard and Beeby reproduce all the characteristic 
features of the dispersion curves. 

4.4. The model calculation of Bhatia and Singh 

An independent model approach given by Bhatia and Singh [20] has also been used for 
the computation of longitudinal and transverse phonon frequencies in the case of liquid 
metal K&s0, alloy. The model assumes that the ions in a simple metal with cubic 
symmetry interact with a central pairwise potential which is effective between nearest 
neighbours only. It also assumes that the force on an ion due to volume-dependent 
energies in the metal (kinetic and exchange energies of the conduction electrons, the 
ground-state energies of the electrons, etc) could be calculated using the Thomas- 
Fermi method. Under these assumptions, Bhatia and Singh [20] write the equations 
determining the o+q relations in the case of liquids as 

= VA + V S  
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L 

q (A-')- 
Figure 4. The longitudinal (L) and transverse (T) phonon frequency results for liquid 
K&s, I alloy: --.computedusingthe approachofTakenoand Goda[ 161;- --,computed 
using the approach of Hubbard and Beeby 1171; .. . .., computed using the approach of 
Bhatia andSingh [ZO]. 

p d ( q )  = W C S [ J 2 ( x )  - Ja(x)/51/a21 + fQ&q2[G(~~s)I2/[q2 + k%(q)I 

pw:(q)  = (NC6/a2)[35dx)/5 - J&)l 
( l o a )  

(lob) 
with 

Jo(x) = 1 - [sin(x)]/x 

J ~ ( x )  = f - sin(x)[(l/x) - (2/x3)] - [2cos(x)]/x2 

and 

x = qa 

Here N,  is the number of nearest neighbours in the system, p is the density and a the 
nearest-neighbour distance. p and S can be obtained for a body-centred cubic lattice 
from the relations [20] 

Cll = 8.613 + 8619 -!- K ,  Cu = -8p/3 + 8619 + K, 
C, = 8p/3 + 8619. 

4.5. Results 

The model approach developed by Bhatia and Singh [20] as discussed in section 4.4 has 
also been used to estimate the eigenfrequencies of the longitudinal and transverse 
phonon modes in liquid K & ~ , s  alloy. The parametersfi and 6 used in these calculations 
have been obtained through the use of elastic constants (equation (4)) for the liquid 
metal ~ ,sCsa ,5  alloy. These phonon dispersion curves are also shown in figure 4. A close 
examination of the longitudinal and transverse branches, as calculated by the model 
developed by Bhatia and Singh for the phonon dispersion, shows all the main charac- 
teristic features of the dispersion curves. 
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Because of the non-availability of any experimental results on phonon dispersion for 
&.sCso.salloy, it has not beenpossible tocompare thecomputedresults withexperiment. 
Nevertheless, the results obtained using three different theoretical approaches are in 
close agreement qualitatively as well as quantitatively. 

5. Thermodynamical properties 

From the long-wavelength limit of the dispersion curves, the longitudinal and transverse 
velocities of sound are estimated. The calculated values of the longitudinal sound 
velocity are VI = 1.70 X lo5 cm s-', 1.55 X 10Scm s-' and 1.42 X lo5 cm s-' from the 
dispersion curves obtained using the three different approaches, i.e. the methods of 
Takeno and Goda, of Hubbard and Beeby, and of Bhatia and Singh, respectively. 
These values are then compared with the value of 1.58 x 10scm s-' obtained from the 
theoretical calculation [21] of the velocity of sound. Similarly from the h e a r  part of the 
transverse phonon dispersion curves the values of the transverse phonon velocity V, 
are also estimated. These are V,  = 1.0 x lo5 cm s-', 0.85 x 10'cm s-' and 
0.76 X los cm s-', respectively. 

For an isotropic solid the isothermal bulk modulus Br is given by [22] B , =  
p (V:  - 4 x V:/3) wherepis thedensityofthesolid. For&,SCG,salloyusingtheabove- 
obtained values of V, and V,, the values of the isothermal bulk modulus are 
2.22 X 10'O dyn 2.06 X 10" dyn cm-* and 1.78 X 1O'O dyn cm-*. These values of 
&arethencompared with thevalucof2.03 x 1O'O dyn cm-*obtainedfrom theaveraged 
value over the pure liquid metals. The results on Brare further compared with the value 
of 2.05 X 1O'O dyn obtained by Gopalarao and Gupta [23] and with the value of 
1.98 x 10'Odyn cm-* calculated using the elastic constant [24]. Further, these results 
have also been compared with the value of 2.03 x 1O'O dyn cm-20btained from the long- 
wavelength limit of the structure factor, i.e. S(0) = 0.02534, 

Further, following Hafner [22] and using these values of the longitudinal and trans- 
verse sound velocities, the Debye temperature OD has been calculated for &.5Cso,s 
alloy. The calculated values of the Debye temperature for liquid &,CS,,~ alloy are 
0, = 71.04 K, 60.77 K and 54.43 K, respectively. Using the Grimvall[25] formula the 
calculated average value of the Debye temperature in liquid JS,.,sC~,s alloy is 51.25 K. 

6. Conclusions 

We have presented detailed theoretical calculations of &.5(&s alloy at 373 K. The 
presentstudyon theatomicstructure andvibrational dynamiwtogether with the thermo- 
dynamical properties reveals the following features. 

(i) The study indicates that, in liquid alloys, long-range oscillations are also present 
in the ion-ion potential similar to the case of liquids and liquid metals. 

(ii) The model proposed by Glass and Rice, assuming that liquids have a quasi- 
crystalline structure, yields a suitable description of the motion of effective atoms in 
liquid ~ . s C s o . s  alloy analogous to single-particle motion in liquid metals. 

(iii) A perusal of section 4 shows that the thus-obtained dispersion relations from 
the three different theoretical approaches [16,17,20] reproduce all the broad features 
of the dispersions in liquid &.sCso.s alloy. 
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